MEMORANDUM

TO: Mr. Joseph Lysonski **DATE:** February 19, 2012

Anderson, Mulholland and Associates

FROM: R. Infante

FILE: JA98691

RE:

Data Validation

BMSMC, Building 5 Area, PR

SM04.00.06

Accutest Job Numbers: JA98691

SUMMARY

Full validation was performed on the data for several soil gas samples analyzed for selected volatile organic compounds (VOC's) by method Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999 and Compendium Method TO-3. METHOD FOR THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR USING CRYOGENIC PRECONCENTRATION TECHNIQUES AND GAS CHROMATOGRAPHY WITH FLAME IONIZATION AND ELECTRON CAPTURE DETECTION, Revision 1.1, April, 1984. The samples were collected at the BMSMC, Building 5 site, Humacao, PR on February 2, 2012 and submitted to Accutest Laboratories of Dayton, New Jersey that analyzed and reported the results under delivery group (SDG) JA98691.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999 and Compendium Method TO-3. METHOD FOR THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR USING CRYOGENIC PRECONCENTRATION TECHNIQUES AND GAS CHROMATOGRAPHY WITH FLAME IONIZATION AND ELECTRON CAPTURE DETECTION, Revision 1.1, April, 1984, The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use.

SAMPLES

The samples included in the review are listed below

FIELD SAMPLE ID	LABORATORY ID	ANALYSIS
I-7A	JA98691-1	VOCs; Methane
A-1R3A	JA98691-2	VOCs; Methane

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- Holding time and sample preservation
- Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Methane

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks for VOCs.

No field/equipment/trip blanks were analyzed associated with this data set.

Surrogate Spike Recovery

The surrogate recoveries were within the laboratory QC acceptance limits in all samples analyzed except for the followings:

Method TO-15

SAMPLE ID		SURROGATE COMPOUND	ACTION
	4-BFB		
_JA98691-1	44.0%		No_action_taken;_the
_JA98691-2	47.0%		method_does_not_
			have_a_suurogate
			recovery_criteria

Internal Standard Performance

VOCs

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Field Duplicate Results

VOCs

Laboratory/field duplicate were analyzed as part of this data set F89892-1/-DUP. Results were within laboratory/recommended control limits except for the following:

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Toluene	0.80	0.65 l	0.49 J	40	No action taken concentration < 5
					x SQL

Methane

Laboratory/field duplicate were analyzed as part of this data set JA98412-1/1-DUP. Results were within laboratory/recommended control limits.

LCS/LCSD Results

VOCs

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Methane

The laboratory analyzed one LCS (blank spike) associated with each matrix from this data set. The % recoveries of all spiked analytes were within the laboratory QC acceptance limits.

Quantitation Limits and Sample Results

Concentration over calibration range in sample JA98691-1, laboratory qualified result as E; sample result qualified as estimated (J).

Dilutions were required with this data set.

Method TO-15

Sample	Dilution Factor	Reason for Dilution
========	=========	
JA98691-1	220 X; 11,000 X	Several VOCs outside calibration range
JA98691-2	240 X; 12,000 X	Several VOCs outside calibration range

Calculations were spot checked.

Certification

The following samples JA98691-1 and JA98691-2 were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. Some of the results were qualified. The results are valid.

Rafael Infante

Chemist License 1888

Report of Analysis

Client Sample ID: I-7A

JA98691-1 Lab Sample ID: Matrix:

Date Sampled: 02/02/12

AIR - Soil Vapor Comp. Summa ID: A724,A729,A592 Date Received: 02/04/12

Percent Solids: n/a Method: TO-15

Project: BMSMC, Building 5 Area, PR

D #1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3W26094.D	220	02/07/12	YXC	n/a	n/a	V3W1029
Run #2	3W26109.D	11000	02/08/12	YXC	n/a	n/a	V3W1030

	Initial Volume	 	 	
Run #1	40.0 ml			
Run #2	200 ml			

Purgeable Aromatics

71-43-2 78.11 Benzene 312 440 100 ppbv J 997 1400 ug/m3 108-88-3 92.14 Toluene 463000 a 4400 880 ppbv 1740000 a 17000 ug/m3 100-41-4 106.2 Ethylbenzene 448000 a 4400 670 ppbv 1950000 a 19000 ug/m3 1330-20-7 106.2 Xylenes (total) 1090000 a 4400 680 ppbv 4650000 a 19000 ug/m3 95-47-6 106.2 o-Xylene 21100 440 68 ppbv 91600 1900 ug/m3 67-64-1 58.08 Acetone 50400 440 80 ppbv 120000 1000 ug/m3 67-63-0 60.1 Isopropyl Alcohol 116000 a 4400 80 ppbv 285000 a 11000 ug/m3 108-10-1 100.2 Methyl Isobutyl Ketone 815000 a 4400 800 ppbv 3340000 a 18000 ug/m3	CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	Units
	108-88-3 100-41-4 1330-20-7 95-47-6 67-64-1 67-63-0	92.14 106.2 106.2 106.2 106.2 58.08 60.1	Toluene Ethylbenzene Xylenes (total) m,p-Xylene o-Xylene Acetone Isopropyl Alcohol	463000 a 448000 a 1090000 a 1070000 a 21100 50400 116000 a	4400 4400 4400 4400 440 440 440	880 670 680 680 68 80 1300	ppbv ppbv ppbv ppbv ppbv ppbv	J	1740000 a 1950000 a 4740000 a 4650000 a 91600 120000 285000 a	17000 19000 19000 19000 1900 1000 11000	ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3

CAS No. Surrogate Recoveries Run#1 Run#2 Limits 460-00-4 4-Bromofluorobenzene 44% b 95% 65-128%

(a) Result is from Run# 2

(b) Outside control limits due to matrix interference.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Accutest LabLink@657856 13:40 15-Feb-2012

Report of Analysis

By

TCH

Prep Date

0.74

n/a

5.0

Page 1 of 1

Client	Sample ID:	I-7A
--------	------------	------

Lab Sample ID: JA98691-1

File ID

QR93714.D

AIR - Soil Vapor Comp. Summa ID: A724

Analyzed

02/07/12

Date Sampled: 02/02/12 Date Received: 02/04/12

Matrix: Method:

EPA TO-3

Methane

Percent Solids: n/a

n/a

Project:

BMSMC, Building 5 Area, PR

DF

1

Prep Batch Analytical Batch

GQR4341

3.3

mg/m3

Run #1 Run #2

Initial Volume Run #1 0.50 ml

16

Run #2

74-82-8

CAS No. MW Compound Result RL MDL Units Q Result RL Units

2350 J

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 460-00-4
 4-Bromofluorobenzene
 98%
 81-115%

 460-00-4
 4-Bromofluorobenzene
 102%
 81-115%

Jack Infante

Mendez It 1888

ppmv E 1540

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: A-1R3A Lab Sample ID: JA98691-

JA98691-2 Date Sampled: 02/02/12 AIR - Soil Vapor Comp. Summa ID: A525,A535,A538,Data2Received: 02/04/12

Matrix: Method:

TO-15 Percent Solids: n/a

Method: TO-15 Project: BMSM

BMSMC, Building 5 Area, PR

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3W26095.D	240	02/07/12	YXC	n/a	n/a	V3W1029
Run #2	3W26108.D	12000	02/08/12	YXC	n/a	n/a	V3W1030

	Initial Volume			
Run #	1 40.0 ml			
Run #	2 100 ml			

Purgeable Aromatics

CAS No.	MW	Compound		Result	RL	MDL	Units	Q	Result	RL	Units
71-43-2	78.11	Benzene		ND	480	110	ppbv		ND	1500	ug/m3
108-88-3	92.14	Toluene		32500	480	96	ppbv		122000	1800	ug/m3
100-41-4	106.2	106.2 Ethylbenzene		312000 a	9600	1500	ppbv		1360000 a	42000	ug/m3
1330-20-7	106.2	106.2 Xylenes (total)		922000 a	9600	1500	ppbv		4010000 a	42000	ug/m3
	106.2	m,p-Xylene		891000 a	9600	1500	ppbv		3870000 a	42000	ug/m3
95-47-6	106.2	o-Xylene		31000	480	75	ppbv		135000	2100	ug/m3
67-64-1	58.08	Acetone		112000 a	9600	1700	ppbv		266000 a	23000	ug/m3
67-63-0	60.1	Isopropyl Alcohol		58100	480	140	ppbv		143000	1200	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone		424000 a	9600	1700	ppbv		1740000 a	39000	ug/m3
CAS No.	Surrog	gate Recoveries R	Run# 1	Run#	2	Limits					
460-00-4	4-Bron	nofluorobenzene 4	17% b	98%		65-128%					

(a) Result is from Run# 2

(b) Outside control limits due to matrix interference.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Raw Date: 1823-1824

Accutest LabLink@657856 13:40 15-Feb-2012

Report of Analysis

By

TCH

n/a

Page 1 of 1

Client Sample ID: A-1R3A

Lab Sample ID: JA98691-2 Matrix: AIR - Soil

File ID

QR93715.D

AIR - Soil Vapor Comp. Summa ID: A535

Analyzed

02/07/12

Date Sampled: 02/02/12 Date Received: 02/04/12

Percent Solids: n/a

n/a

Method: Project: EPA TO-3 BMSMC, Building 5 Area, PR

DF

1.2

Prep Date Prep Batch Analytical Batch

GQR4341

Run #1 Run #2

Initial Volume Run #1 0.50 ml

Run #2

CAS No. MW Compound Result RL MDL Units Q Result RL Units

74-82-8 16 Methane 1200 6.0 0.89 ppmv 785 3.9 mg/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 460-00-4
 4-Bromofluorobenzene
 96%
 81-115%

 460-00-4
 4-Bromofluorobenzene
 104%
 81-115%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

																	
AIR.	СНА	IN C	FC	HIST	ODZ	7											
				d Data		•	FED-EX T	racking #		Bottle	Order Contry	25/201		PA	GE_	ΩE	/
ACCUTEST	2235 II	S Highwa	 v 130. ľ	Dayton, NJ	08810		&77C	<u>5467</u>	<u> 709;</u>	38 [/	<u> </u>	25/201	2-6	———```	·		
LABONATORIES		_	•	x; 732.329			Cab Cabble	•			"" J/	986	91				
Consequence Name	Client / Re	porting Informa		t Name	. 14							ather Paramete	rs		Re	queste	d Analysis
Company Name AMAI				MS- B	s la.	3 مہ	-			Temperature (I		Maximu	m: &:	30	1		
\$ divine			Stree	1		3										(ड	
110 Corporate Port Dr	10 B		Civ					Stoko		Stop: 8	30	Minimu	m: 6 7	3 -		ĭ	
HEY L COR . L	0604		H,	o Mos co	40.			6 gΩ	1	Atmoshpheric	Pressure (ir	nches of Hg)		-	┧╻╽	(To-	
Project Contact Terry Towler theylered	man con	. 11	Projec	#						Start 30	*	Maximu	™ 3o	•	(50-3)) (-
Phone # Fax #	INCH COVI	10 17.CU	Client	Purchase Orde	er#					Stop: 30 '		Minimu	m: 30	مه	è	19	
914-251-0400															5	×	`
Sampler(s) Name(s) Terry Taylor										Other weather	comment:				임	MICK, 1PA	Q
	Air Type	Sampling	Equipmen	t Info		Start	Sampling Info	rmation			Stop S	Sampling Info	mation] [
	Indoor (i) Soil Vap (SV)	Canister Serial #	Canister	Flow	Date	Time	Canister	Interior	Sampler	Date	Time	Canister	Interior	Sampler Init.	Methens	RTEX	8
Lab Sample # Field ID / Point of Collection	Ambient(A)	<u> </u>	Size &Lor1L	Controller Serial #		(24 hr clock)	Pressure ("Ho)	Temp (F)	Init.		(24 hr clock)	Pressure ("Hg)	Temp (F)		I	12	ৰ 📗
-1 I-7A	SV	A724	IL.V	FC389	2/2/12	1511	29.5		#	2/2/12	1216	4		N	X	X	
-2 A-1R3A	_S∨	A535	11	FC)84	2/2/12	1610	29.5	<u> </u>	π		1616	4		12	X	X	
											<u> </u>						
		<u> </u>			,						<u> </u>	†					
						-		- i	l				 		1		_
	 	 							-						-		-H
<u> </u>		 					-				<u> </u>	-	<u> </u>		-	\dashv	
Turnaround Time (Business Days)		<u> </u>		L		Det-	Deliverable Infi	tion					<u> </u>				
Standard - 15 Days												Comments	/ Remarks				
10 Day					All N.		is mendatory	-ual ? 7 			(~		()				-
5 Day	roved By:		-		Com						\mathcal{Q}			·			
3 Day	Date:					iced T2		┨									
2 Day	Lides.				Full 3	n	×	7									
1 Day					Other	r		-	7								
Other		- 6 A											_				
Relinquished by Jafforeylay. Date	Time: Rec	Sample Cus sived by:			verow each !	Retinguis	s change possi hed by:	ession, includ	ng courier d		Bis Time: 27	Received t	y. \	77	100		
1 1 Kan // awar 1/2	Time: Rec	<u> </u>	e/E	x		2	70	JE	T	. :	2/1/12	75 Received to 2					
Restriction of the Control of the Co	17/160 3	gangd by:				Relinquis	hed by:			D	ale Time:	Received t	y: \(\sigma\)	0			
Relinquist fed by V Day	Tingle: Rec	sived by:				Custody.	168					14					_
ls /	5					19	68	INTAC	(
1																	

JA98691: Chain of Custody Page 1 of 2

	Project Number:JA98691 Date:02/02/2012
	Date02/02/2012
REVIEW OF VOLATILE ORGA	
The following guidelines for evaluating volatile organics we actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the follow "Compendium Method TO-3. METHOD FOR THE DECOMPOUNDS IN AMBIENT AIR USING CRYOGENIC PRECOMPOUNDS IN AMBIENT AIR USING CRYOGENIC PRECOMP	ofessional judgment to make more informed e sample results were assessed according to ng order of precedence: QC criteria from FERMINATION OF VOLATILE ORGANIC CONCENTRATION TECHNIQUES AND GAS ECTRON CAPTURE DETECTION, Revision isted on the data review worksheets are from data package received has been
Lab. Project/SDG No.:JA98691 No. of Samples:2	Sample matrix:Air
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:	
X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A_ Matrix Spike/Matrix Spike Duplicate Overall Comments:_Methane_VOC's_by_method_TO-3_	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers: J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
Reviewer: Calal Mark	
Date: 02/18/2012	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	, , , , , , , , , , , , , , , , , , ,	,
		
		, <u>, , , , , , , , , , , , , , , , , , </u>
		
		THE PARTY OF THE P
·		

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	 All samples analyzed w	l rithin the recommended	l method	holding time

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Criter	All criteria were metN/A ia were not met see below
GC/MS TUNING			
The assessment of standard tuning QC	•	determine if the sample instrum	nentation is within the
N/A_ The BFB pe	erformance results were r	eviewed and found to be within t	he specified criteria.
N/A_ BFB tuning	was performed for every	24 hours of sample analysis.	
If no, use profession qualified or rejected	, ,	ne whether the associated data	should be accepted,
List	the	samples	affected:
			

If mass calibration is in error, all associated data are rejected.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	02/06/12
Dates of continuing calibration:	02/07/12
Instrument ID numbers:	GCQR
Matrix/Level:Air/medium	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
	-				
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be ≤ 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r > 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
			fic_criteria	
Field <u>/Equipme</u> n				
DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks	_analyzed_with	this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				1	

All criteria were met
Criteria were not met
and/or see belowX

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID 4-BFB		SURROGATE COMPOUND			ACTION	
QC Limits* (Air)	L81to_11	5to	to	to	_	

4-BFB = 4-Bromofluorobenzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

•					
COMPOUND	% R	RPD	QC LIMITS	ACTION	
•	-		TO-15;_blank_sp	nike_used_to_assess	
	COMPOUND are_not_required_a	COMPOUND % R are_not_required_as_part_of_l	COMPOUND % R RPD	COMPOUND % R RPD QC LIMITS are_not_required_as_part_of_Method_TO-15;_blank_sp	Matrix/Level: COMPOUND % R RPD QC LIMITS ACTION are_not_required_as_part_of_Method_TO-15;_blank_spike_used_to_assess

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

A separate worksheet should be used for each MS/MSD pair.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
			· · · · · · · · · · · · · · · · · · ·		

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT		
Recoverie	Recoveries_within_laboratory_control_limits					
		•				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see belowX
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs:JA98412-1	Matrix:_Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
					-

					-

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

Actions:

All criteria were met _	_N/A
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
· · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		······································	
					······································
·					
	<u> </u>	 		· · · · · · · · · · · · · · · · · · ·	
	 ' 			· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·			

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JA98691-1

Methane

RF = 1,111

 $[] = (2612832)/(1.111 \times 10^3)$

= 2352 ppmv OK

Concentration over calibration range, laboratory qualified result as E; sample result qualified as estimated.

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JA98641-2	1.2 x	METHANE OUTSIDE CONCENTRATIO RANGE
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

				<u> </u>			
B.	Percent S	Solids					
	List same	oles which ha	ve < 50 %	solids			•
			_ 00 %	001140			
							
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
							
		···································					
Actions							
	If the % s	olids of a soil	l sample is	10-50%, estimate	positive results	(J) and nonde	etects (UJ)
	If the % s (R)	olids of a soi	l sample is	< 10%, estimate p	ositive results (J) and reject r	nondetects

	Project Number:JA98691
	Date:02/02/2012
REVIEW OF VOLATILE ORGA The following guidelines for evaluating volatile organics we actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the followin "Compendium Method TO-15. Determination Of Volatile Organ Specially-Prepared Canisters And Analyzed By Gas Chru January, 1999". The QC criteria and data validation actions list the primary guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutestreviewed and the quality control and performance data summand.	ere created to delineate required validation fessional judgment to make more informed a sample results were assessed according to any order of precedence: QC criteria from the compounds (VOCs) In Air Collected In comatography/Mass Spectrometry (GC/MS), sted on the data review worksheets are from data package received has been
Lab. Project/SDG No.:JA98691	Sample matrix:Air
No. of Samples:2	
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.: X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_Selected_VOC's_by_method_TO-15	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer:	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		
		
		73.6
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	All samples analyzed w	I rithin the recommended	l method	holding time
······································				

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Criteria	a were not met see below
GC/MS TUNING			
The assessment of standard tuning Quantum Quantum Control of the c	•	determine if the sample instrum	entation is within the
_X The BFB	performance results were	reviewed and found to be within th	e specified criteria.
XBFB tunin	g was performed for every	y 24 hours of sample analysis.	
If no, use profess qualified or rejecte		ine whether the associated data	should be accepted,
List	the	samples	affected:
If mass calibration	is in error, all associated	data are rejected.	

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_01/16/12	_01/23/12			
Dates of continuing calibration:	01/23/12	_02/06/12	_02/07/12	_02/08/12_	_02/13/12_
Instrument ID numbers:	_GCMS2W	_GCMS3W			
Matrix/Level:Air/low					,

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, <u>%D</u> , r		AFFECTED
		-			
	-,				
				-	

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r > 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	_ d_blank_meeth_	_method_specif	ic_criteria	
Summa_c				
Field/Equipmen		·····		
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks	_analyzed_with	_this_data_package	
		·		

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	,				

All criteria were met
Criteria were not met
and/or see belowX

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID		SURROGATE COMPOUND	ACTION
	4-BFB		
_JA98691-1	44.0%		No_action_taken;_the
_JA98691-2	47.0%		method_does_not_
 	· · · · · · · · · · · · · · · · · · ·		have_a_suurogate_
	······		recovery_criteria
			
	· · · · · · · · · · · · · · · · · · ·	***************************************	
		· · · · · · · · · · · · · · · · · · ·	

QC Limits* (Air)			
LL_to_UL	65to_128	toto	to

4-BFB = 4-Bromofluorobenzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria. Sample ID: Matrix/Level:							
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION		
MS/MSD_are_not_required_as_part_of_Method_TO-15;_blank_spike_used_to_assess_accuracy							

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met _____ Criteria were not met and/or see below __N/A___

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX	_
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recover	ies_within_labor	atory_control_limits		<u>, , , , , , , , , , , , , , , , , , , </u>
 				
	····			

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see belowX
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs:F89892-1/-DUP	Matrix:_Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
F89892-1/-DUP					
Toluene	0.80	0.65 1	0.49 J	40	No action taken
					concentration < 5
					x SQL
					_

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs:JA98624-2/-2DUP	Matrix:_Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD <u>+</u> 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
- No. 100 March 1 Secretary Company of the Late of the Company of the Compa	ļ				

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX	
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

044DI E ID

Actions:

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	12 001	15 AREA	RANGE	ACTION
	ndard_area_and_re ion_standards			_control_limits_for_	both_samples

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JA98641-1

Benzene

RF = 0.965

[] = (4957)(10)/(362319)(0.965)

= 0.14 ppbv OK

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
JA98641-1	220 x; 11000 x	SEVERAL VOC'S OUTSIDE CONCENTRATIO RANGE
JA98641-2	240 x; 12000 x	SEVERAL VOC'S OUTSIDE CONCENTRATIO RANGE
	Marie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		
1	1	I .

В.	Percent Solids
	List samples which have ≤ 50 % solids
Actions	
	If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)
	If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)